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Abstract
In this survey the authors present a brief description of their contribution to Nielsen 
fixed point theory. Aspects of Reidemeister theory, equivariant fixed point theory 
and coincidence theory are discussed.
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1  Introduction

This survey compiles the major part of the work developed by the authors (not as a 
group) on Nielsen fixed point theory in a broad sense. It is divided into four sections 
which may be read independently of one another. The main results are explicitly 
stated and, even though not much details are provided, we present all necessary ref‑
erences. The appendix, on the other hand, contains detailed alternative proofs of cer‑
tain results on equivariant fixed point theory. For an extensive survey on the subject 
we refer to the Handbook of Topological Fixed Point Theory, see [10].

The well known Lefschetz Fixed Point Theorem states that for a finite sim‑
plicial complex K and a continous function f ∶ K → K with L(f), the Lefschetz 
number of f, different from zero, the existence of a fixed point of f is guaranteed. 
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By a fixed point of f we mean a point x ∈ K such that f (x) = x . Since the Lefs‑
chetz number is a homotopy invariant, we conclude that every map g homotopic 
to f will also have a fixed point.

In this context, it is natural to ask wheather a map f ∶ K → K with L(f ) = 0 
can be deformed to a map with no fixed points. This result is not true in general 
and Nielsen in [44], introduced another homotopy invariant, known as the Nielsen 
number of f, N(f), which counts the number of essencial fixed point classes.

In Nielsen Fixed Point Theory, a notion of a fixed point class is defined by say‑
ing that two fixed points x0 and x1 are in the same Nielsen class of f if there exists 
a path � , from x0 to x1 , such that f (�) is homotopic, as paths, to � . An index of 
a Nielsen class is also defined and the Nielsen number is the number of classes 
with non zero index, the essencial ones. The Lefschetz number then represents 
the global index of the fixed point set and N(f) is a lower bound to the minimal 
number of fixed points in the homotopy class of f.

A presentation of Nielsen Fixed Point Theory for maps defined in simplicial 
complexes can be found in [9, 39] and [41].

It is clear that N(f ) = 0 implies L(f ) = 0 and there are plenty of examples 
where L(f ) = 0 but N(f ) ≠ 0 . Therefore Nielsen number represents, a sharper 
homotopy invariant with respect to fixed points associated to a homotopy class 
of a map. The original question, namely, under what conditions we may have 
a converse of the Lefschetz Fixed Point Theorem, is then replaced by deciding 
wheather N(f ) = 0 suffices to guarantee that f can be deformed to a fixed point 
free map.

Under this perspective, many other questions arise and we mention some of 
them focusing in those that are connected to the contribuitions related to the 
Algebraic Topology group of IME-USP. 

1.	 Is it possible to stablish settings where the Nielsen number of a map f, N(f), may 
represent exactly the minimum number of fixed points in the homotopy class of 
f? In case of a positive answer for all maps f ∶ X → X , we say that the space X 
satisfies the Wecken property. This question includes the original one when we 
assume N(f ) = 0.

2.	 Can we provide answers to the original question when we look at specific homot‑
opy classes of maps? A special case of interest is looking at deformations, i.e., 
the homotopy class of the identity map.

3.	 Can we provide ways of evaluating the Nielsen number?

Similar notions and questions may be asked in the coincidence context, that 
is, when we take a pair of maps f , g ∶ X → Y  and look at the coincidence set 
C(f , g) = {x ∈ X | f (x) = g(x)}.

Nevertheless it should be pointed out that to set up the correspondent coinci‑
dence theory, the degree of complexity is much higher, due to the fact that the 
domain and the target do not have to be the same and may have a quite different 
nature. So far, besides the case where the spaces involved are orientable mani‑
folds of the same dimension n, with n bigger than or equal to three, there is not a 
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well defined coincidence theory even when we assume that both spaces are finite 
complexes, let alone for the more general situation where the spaces are ENR’s.

There is a handfull of works providing, under certain conditions, positive answers 
to these questions and, in most of them, the spaces involved are manifolds or finite 
simplicial complexes. In particular, question 1 has a positive answer for maps 
f ∶ M → M , where M is a compact triangulable manifold of dimension different 
from 2, see [51].

This survey is divided into four sections besides this introduction. In Sect.  2, 
connected with the question of evaluating Nielsen numbers, some results on Rei‑
demeister Theory are presented. Section 3 is devoted to some aspects of equivariant 
fixed point theory. We turn our attention to coincidence theory in Sect. 4 . An appen‑
dix constitutes Sect. 5 where a proof of Theorem 3.1 using obstruction methods is 
presented.

2 � On Reideimeister numbers for fixed points

The results and the example that will be presented in this section were taken 
from[11, 12] and [13] and their statements were copied almost verbatim from these 
references.

As we mentioned before, for a compact simplicial complex X, the Nielsen num‑
ber of a map f ∶ X → X is a homotopy invariant and a lower bound to the minumum 
number of fixed points in the homotopy class of f, and under certain conditions, 
these two numbers coincide. Therefore, one important question in Nielsen theory is 
to evaluate Nielsen numbers. One possible approach to evaluate the Nielsen num‑
ber is through the Reidemeister number of f, R(f ) , defined as the number of equiva‑
lence classes, under conjugation, of liftings of f to the universal covering space of 
X. Introduced in 1936 by K. Reidemeister [45], it is an upper bound for the Nielsen 
number, N(f ) ≤ R(f ) . B. Jiang (in [39]) defined a subgroup, J(X), of the fundamental 
group of X, �1(X) , known as the Jiang subgroup and studied the spaces for which 
J(X) = �1(X) . Spaces with this property are called Jiang-spaces and for them all 
Nielsen fixed point classes have the same index. If X is a Jiang space and L(f ) ≠ 0 , 
we have R(f ) = N(f ) . Since the Reidemeister number is easier to compute than the 
Nielsen number, it is an useful concept in fixed point theory.

In different settings such as maps of pairs or fiber maps, analogs of the Nielsen 
number are defined. Developed in works of Brown [9], Schirmer [47], Jiang [39] and 
Zhao [57], the relative Nielsen number and its related numbers, such as the Nielsen 
number on the complement, the Nielsen number of the closure, the Nielsen number 
of the triad, the surplus Nielsen number, among others, have made the study of fixed 
points more accurate, in the sense that those Nielsen numbers are better bounds for 
the respective minimum numbers of fixed points.

Initially, let us consider a pair of spaces (X, A), where X is a compact, connected 
polyhedron, A ⊂ X is a finite subpolyhedron, not necessarily connected, and let 
f ∶ (X,A) ⟶ (X,A) be a map of the pair, that is f ∶ X ⟶ X such that f (A) ⊂ A.

By extending the concept of a universal covering space, using the conju‑
gacy by deck transformations and the index of fixed point classes as defined 



511

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:508–538	

by Jiang (see  [39]), we classify and count the number of classes of liftings of 
a map (see  [11]). This approach, more geometrical, suggests the definition of 
a Reidemeister number of the complement, R(f ;X − A) , and a relative Reide‑
meister number, R(f ;X,A) , both of which are homotopy invariants for maps of 
the pair and satisfy many properties that the usual Reidemeister number does. 
We have that R(f ;X − A) is an upper bound for the Nielsen number of the com‑
plement N(f ;X − A) defined in [57] and R(f ;X − A) = N(f ;X − A) when (X, A) is 
a Jiang pair (i.e., (X, A) is a pair of compact polyhedra, where X is a connected 
Jiang space) and the Lefschetz number of f is not zero. Similarly, R(f ;X,A) is 
an upper bound for the relative Nielsen number N(f ;X,A) defined in [47] and 
R(f ;X,A) = N(f ;X,A) when (X, A) is a Jiang pair and the Lefschetz number of f, 
L(f ) , is not zero.

To illustrate, we consider the example showed in [11].

Example 1  Let X = P2 be the real projective space, with universal covering space 
X̃ = S2 and covering projection p ∶ S2 ⟶ P2 defined by p(x, y, z) = {(x, y, z), (−x,−y,−z)} ; 
its covering transformations 𝛾i ∶ X̃ ⟶ X̃ are 𝛾1(x, y, z) = (x, y, z) = idX̃ and 
�2(x, y, z) = (−x,−y,−z) (the antipodal map). Let A = {(1, 0, 0), (−1, 0, 0)} ⊂ X , a 
point in P2 ; thus, its universal covering space is Ã = A , its covering projection is 
pA = idA , and it has covering transformation 𝛾 ∶ Ã ⟶ Ã given by 𝛾Ã = idÃ.

Let f ∶ X ⟶ X be defined by

Then, we have two liftings f̃1(x, y, z) = (−x, y,−z) and f̃2(x, y, z) = (x,−y, z) . Since 
f̃1 ≠ 𝛾1◦f̃2◦𝛾

−1
1

 and f̃1 ≠ 𝛾2◦f̃2◦𝛾
−1
2

 , we have two classes of liftings, defined by con‑
jugation by deck transformations; the number of such classes is the geometric defini‑
tion of the Reidemeister number, therefore R(f ) = 2 . Likewise, observe that

therefore fA = idA and R(fA) = 1.
Since we are dealing with lifting classes, we want somehow to count the classes 

of liftings of f that are related to the classes of liftings of fA . The usual way of relat‑
ing these two types of classes, is well explained in [39, Chapter 3]. In order to do 
that, consider the inclusion

a lifting of i is a map ĩ ∶ Ã ⟶ X̃ satisfying the equality pX◦ĩ = i◦pA . This gives us 
two possibilities:

We will, then, look at the liftings f̃  , of f, that will make the following diagram

f ({(x, y, z), (−x,−y,−z)}) = {(−x, y,−z), (x,−y, z)} .

f ({(1, 0, 0), (−1, 0, 0)}) = {(−1, 0, 0), (1, 0, 0)} = idA ,

i ∶ A ↪ X

{(1, 0, 0), (−1, 0, 0)} ↦ {(1, 0, 0), (−1, 0, 0)} ,

ĩ1({(1, 0, 0), (−1, 0, 0)}) = (1, 0, 0) or ĩ2({(1, 0, 0), (−1, 0, 0)}) = (−1, 0, 0)
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commutative, for j = 1 or 2, because this is a correspondence that doesn’t depend on 
the lifting we pick, only on the map i itself. One can see, for ĩ1 , that the lifting f̃1 of f 
is the one such that f̃1◦ĩ1 = ĩ1◦f̃A . Also, the above equality doesn’t hold for f̃2 in the 
place of f̃1 . In this particular example, we are identifying the liftings and the lifting 
classes. So, the number of lifting classes of f that are not related to the lifting classes 
of fA is 1 and this will be our Reidemeister number of the complement, for this par‑
ticular map. Again, looking at the relative Nielsen number, we will say that the rela‑
tive Reidemeister number is the number of lifting classes of fA plus the number of 
lifting classes of f that are not related to them; in this case, we have that the relative 
Reidemeister number is 2.

For an alternative algebraic formulation of the Reidemeister number (see 
[12]), notice that there is a group automorphism, � , of the fundamental group of 
a space, � = �(X) , that gives a one-to-one correspondence between Reidemeister 
classes and lifting classes. This originates a Reidemeister action of � on � , where 
the Reidemeister classes are the orbits of this action. The Reidemeister number 
of a map, R(f ) , thus is the cardinality of the set of orbits, #R(�,�) . Similarly, for 
every f-invariant component Ak of A, we have, for each k, R(fk) = #R(�k,�k) and 
we define R(fA) = #R(�A,�A) =

∑
k #R(�k,�k).

It is possible to amplify the class of spaces where these definitions can be use‑
ful, although many of the results are also valid for more general spaces such as 
compact ANRs or spaces which admit a fixed point index with the usual proper‑
ties and for which universal covering spaces exist.

A space X is a Jiang-type space, as defined by P. Wong (see [55]), if the fol‑
lowing conditions are satisfied for all selfmaps f ∶ X ⟶ X : 

	(C1)	 L(f ) = 0 ⇒ N(f ) = 0;
	(C2)	 L(f ) ≠ 0 ⇒ N(f ) = R(f ).

As examples of Jiang-type spaces we have the classical Jiang spaces, nilmani‑
folds, and certain classes of solvmanifolds and homogeneous spaces.

In [12], a Jiang-type result was proven

Theorem 2.1  [12, Theorem 3.2] Suppose that (X, A) is a pair of Jiang-type spaces, 
such that L(f ) ⋅ (

∏
k L(fk)) ≠ 0 , then N(f ;X,A) = R(f ;X,A).

Turning our attention to fibrations, let p ∶ E → B be a Hurewicz fibration 
where each fiber F = p−1(b) over b ∈ B , E and B are 0-connected compact ANRs. 
A selfmap f ∶ E → E is fiber-preserving if f induces a map f̄ ∶ B → B such that 
f̄◦p = p◦f .

Ã
f̃A

⟶ Ã

ĩj ↓ ↓ ĩj

X̃
f̃

⟶ X̃
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The Nielsen-type number for fiber-preserving maps, denoted by NF(f , p) , can 
be realized as a sharp lower bound for the number of fixed points in the fiberwise 
homotopy class of f (see [36]). Under Jiang-type conditions it is possible to cal‑
culate it as the relative Reidemeister number R(f ;E,F�) , as established in [12] as 
follows

Theorem 2.2  [12, Theorem 5.1] Let p ∶ E ⟶ B be a Hurewicz fibration with typi-
cal fiber F = p−1(b) , b ∈ B , E and B 0−connected compact ANRs. Suppose that E 
and F are of Jiang-type. For any set � of essential representatives of fixed points of 
f  , if

then

Here f  denotes the induced map in the base and fb the restriction of f on the 
fiber over b ∈ Fix(f ).

We further explore algebraic conditions under which the computation of the 
relative Reidemeister number may be simplified, leading to the following theorem 
(see [12])

Theorem  2.3  [12, Theorem  5.2] Let p ∶ E ⟶ B be a Hurewicz fibration with 
typical fiber F = p−1(b) , b ∈ B , E and B 0−connected compact ANRs. Suppose 
that �2(B) is trivial. Let f ∶ E ⟶ E be a fiber-preserving map with induced map 
f ∶ B ⟶ B and � be a set of essential representatives of fixed points of f  . For 
b ∈ � , let f #,b ∶ �1(B, b) ⟶ �1(B, b) be the induced homomorphism. If for any 
b ∈ � , Fix(f #,b) = 1 , then R(f ;E,F�) = R(f ) . If, in addition, F and E are Jiang-type 
spaces and L(f ) ⋅

∏
bi∈�

L(fbi) ≠ 0 , then

As a remark (we reproduce  [12, Remark 6]) observe that the condition 
Fix(f #,b) = 1 for every b ∈ � is the same as the “essentially fix trivial” condition as 
in [36]. Essentially fix trivial spaces include the class of solvmanifolds and there‑
fore the class of nilmanifolds.

Let p ∶ E ⟶ B be a Hurewicz fibration and f ∶ E ⟶ E a fiber preserv‑
ing map. R.  Brown [8] initiated the study of the Nielsen fixed point theory for 
fiber-preserving maps and gave conditions for which N(f ) = N(fb)N(f ) , where f  
denotes the induced map in the base and fb the restriction of f on the fiber over 
b ∈ Fix(f ) . Such a product formula was further studied by Fadell in [19] and nec‑
essary and sufficient conditions for its validity were given by You in [56].

One of the standing assumptions in these works is that the fibration p be ori‑
entable. By relaxing this assumption, an addition formula, rather than a product 
formula has been obtained by Heath, Keppelmann and Wong in [36]. The main 

L(f ) ⋅
∏

bi∈�

L(fbi) ≠ 0

NF(f , p) = R(f ;E,F�) .

N(f ;E,F�) = NF(f , p) = R(f ;E,F�) = R(f ) .
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objective of these formulas is to compute the Nielsen number of f in terms of pos‑
sibly simpler Nielsen type invariants of f  and of fb.

In his thesis [48], A. Schusteff established the product formula for the relative 
Nielsen number of a fiber preserving map of pairs. More precisely, given a com‑
mutative diagram

conditions were given to ensure that the product formula holds, i.e.,

where E0

p0
⟶B0 is a sub-fibration of a Hurewicz fibration E

p
⟶B and Fb , F0b are 

the fibers of p and p0 , respectively, over b ∈ Fix(f )|B0
 . Furthermore, a relative Rei‑

demeister number R(f ;E,E0) was introduced in  [48] to give computational results 
when the spaces are Jiang spaces.

The main objective of the work by F. Cardona and P. Wong, see  [13], is to 
compute the relative Reidemeister number R(f ;E,E0) and the relative Reide‑
meister number on the complement R(f ;E − E0) of fiber-preserving maps of pairs. 
In order to give an algebraic formulation of the relative Reidemeister numbers 
for fiber preserving maps, we adapted what was done in [34] for the Reidemeister 
number for coincidences via an algebraic approach, for our fixed-point settings.

Let �X denote the group of deck transformations of the universal cover of X; 
thus �X is also identified with �1(X) with one appropriate basepoint.

Let (E,  p,  B) be a Hurewicz fibration with the typical fiber F = p−1(b) for 
b ∈ B , with all spaces being 0-connected. Let f ∶ E ⟶ E be a fiber preserving 
map. Suppose K = ker i , where i# ∶ �F ⟶ �E is induced by i ∶ F ↪ E . We will 
denote by i#K the induced map on the quotient, i#K ∶ �F∕K ⟶ �E . Also, the set 
of orbits of the Reidemeister action of �′ in �F∕K will be denoted by RK(�

�,�F) . 
Moreover, we can suppose, without loss of generality, that i#K is the inclusion 
map (notice that 𝜋F∕K ≅ Im i#K < 𝜋E ). In what follows we will indicate the con‑
jugation map by ��(�) = ���−1 , without being explicit where it is defined, since 
the context will make it clear. The following theorem (see [13]) gives a general 
formula for a fiber-preserving map.

Theorem 2.4  [13, Theorem 2.1] Let (E, p, B) be a fibration as described above; let f 
be a fiber-preserving map. Then, there is a one-to-one correspondence between the 
sets

N(f ;E,E0) = N(fb;Fb,F0b) N(f ;B,B0) ,

R(�,�E) ↔
∐

[�]∈R(�,�B)

î�KRK(�� �
�,�F),
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where î�K is induced by i#K defined above, for any [�] ∈ p̂ −1([�]) . If the cardinalities 
of the sets involved are finite, we have

where [�] ∈ RK(�� �
�,�F) and [�] ∈ p̂ −1([�]).

Let � ∈ R(�,�E) . The index of � is simply index(f , �E Fix(�f̃ )) , the usual fixed 
point index, where �E ∶ Ê → E denotes the universal covering. So, if index of � 
is nonzero then � is said to be essential. Denote by N(�,�E) the set of essential 
� ∈ R(�,�E) . Therefore, N(f ) = #N(�,�E) . Similarly, we denote by NK(�

�,�F) 
the set of essential �� ∈ RK(�

�,�F) , and NK(f
�) = #NK(�

�,�F).

Definition 2.1  Let f be a fiber-preserving map, let � and � be the homomorphisms 
induced by f and f  . We say that f is locally (resp. essentially locally) Fix group uni-
form if

does not depend on [�] ∈ p̂ −1([�]) (resp. [�] ∈ p̂ −1([�]) ∩N(�,�E) ). Similarly, 
we say that f is globally (resp. essentially globally) Fix group uniform if

does not depend on [�] ∈ R(�,�B) (resp. N(�,�B)).

A fiber map of the pair is a pair of fiber preserving maps (f , f
0
) ∶ (E,E

0
) → (E,E

0
) 

with f0 = f |E0
 where (E0, p0,B0) is a Hurewicz sub-fibration of a Hurewicz fibra‑

tion (E, p, B). Also, we assume that E, E0 , B, B0 and the typical fibers are all 0−
connected spaces.

Just as before, consider K0 = ker i0# , where i0# ∶ �F0
⟶ �E0

 is induced by 
i0 ∶ F0 ↪ E0 . Denote by i0#K0 the induced map on the quotient, the set of orbits of 
the respective Reidemeister action by RK0

(��
0
,�F0

) , and the respective cardinality, 
#RK0

(��
0
,�F0

) , by RK0
(f �
0
) . We will denote the set of orbits of the Reidemeister 

action of �′ which are in the image of the orbits of the Reidemeister action of �′
0
 

under �F0
∕K0 ⟶ �F∕K by RK,K0

(��,��
0
) , and the respective cardinality, 

#RK,K0
(��,��

0
) , by RK,K0

(f �, f �
0
) . Moreover, we can suppose, without loss of gener‑

ality, that i#K is the inclusion map (notice that 𝜋F∕K ≅ Im i#K < 𝜋E).
Similar to NK and NK , we can define NK,K0

(��,��
0
) as the set of essential 

�� ∈ RK,K0
(��,��

0
) , and NK,K0

(f �, f �
0
) = #NK,K0

(��,��
0
).

The following theorem (see [13]) in which R(f ;E,E0) and R(f ;E − E0) are com‑
puted or estimated in terms of the relative Reidemeister numbers of f  and of fb 
generalizes some of the results of [48].

R(f ) =
∑

[�]∈R(�,�B)

∑

[�]

1

[Fix(���) ∶ p#(Fix(����))]

[Fix(�� �) ∶ p#(Fix(�� �))]

[Fix(�� �) ∶ p#(Fix(�� �))]
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Theorem  2.5  [13, Theorem  3.4] Let (f , f0) be a fiber map of the pair. Let 
K = ker i# and K0 = ker i0# . Suppose f is globally Fix group uniform and let 
s = [Fix(�) ∶ p#(Fix(�))] , then

and,

Also, if (E,E0) is a Jiang-type pair with nonzero Lefschetz numbers, L(f ) ⋅ L(f0) ≠ 0 , 
then we have the respective Nielsen numbers

and,

As an application, using the relative Reidemeister number on the complement 
and equivariant fixed point theory, in the last section of [4] we estimated the 
asymptotic Nielsen type number, denoted by NI∞(f ) (for more information on the 
later, see [40]), when f is a fiber-preserving map on a compact polyhedron. This 
is Theorem 4.1. For the sake of simplicity let us state only a consequence of this 
theorem, which is proved there:

Corollary 2.1  [13, Corollary 4.2] If X is a solvmanifold and R(f n) < ∞ for all n, then 
for any prime p,

where f is a fiber-preserving map of a Mostow fibration of X.

R(f ;E − E0)

=
1

s

{ ∑

[�]∈R(�,�B)

#RK(�� �
�,�F) −

∑

[�]∈R(�,�0)

#RK,K0
(�� �

�, ��0 �
�
0
)

}

R(f ;E,E
0
) =

∑

[�
0
]∈R(�

0
,�B0 )

#RK
0

(��
0

��
0
,�F

0

)

[Fix(��
0

�
0
) ∶ p

0#
(Fix(��

0

�
0
))]

+
1

s

{ ∑

[�]∈R(�,�B)

#RK(�� �
�
,�F) −

∑

[�]∈R(�,�
0
)

#RK,K
0

(�� �
�
, ��

0

��
0
)

}
.

N(f ;E − E0)

=
1

s

{ ∑

[�]∈N(�,�B)

#NK(�� �
�,�F) −

∑

[�]∈N(�,�0)

#NK,K0
(�� �
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3 � Some aspects of equivariant fixed point theory

In this section we intend to describe some results related to the questions men‑
tioned at the introduction when considering the equivariant setting.

Some of the results presented in this section were taken from [1] and from [23] 
and their statements were copied verbatim from these references.

We will start by setting some notation. Consider a finite group G and an 
n-dimensional smooth compact G-manifold. For a subgroup H of G, we define 
MH = {x ∈ M | hx = x,∀h ∈ H} and for f ∶ M → M a G-map we denote by 
f H ∶ MH → MH the restriction of f to MH.

We say that f is G-deformable to a fixed point free map if there exists a map f1 , 
G-homotopic to f, with no fixed points. Observe that if this is the case, then every 
f H ∶ MH → MH is deformed to a fixed point free map, for every subgroup H of G.

In the work G-Deformation to Fixed Point Free Maps via Obstruction Theory, 
by L. D. Borsari e D. L. Gonçalves, see [2], the converse of the above statement 
is obtained under certain conditions, namely:

Theorem 3.1  Let M be a compact differentiable manifold and assume the action of 
G on M satisfies one of the following conditions: 

(a)	 Given any two isotropy groups H and K, with H ≤ K , then the codimension of 
any connected component of MK in MH is different from one. Furthermore, the 
dimension of each component of MH is different from 2, for every H ≤ G.

(b)	 Each component of MH is simply connected, for all H ≤ G.

Then if f ∶ M → M is a G−map such that, for every H ≤ G , f H ∶ MH → MH is 
deformable to a fixed point free map it follows that f is equivariantly deformable 
to a fixed point free map.

This result is proved in a pre-print which has not been submitted to publica‑
tion because by the time it was being written down, back in 1987, a work by 
E. Fadell and P. Wong, see [22], was published with the same main results as 
ours, although proved with different techniques. The proof we gave was based on 
obstruction theory methods, where an appropriate local system of coefficients for 
cohomology is set up. We will take this opportunity to present this work in the 
appendix section, since it seems to us that the technique is interesting in its own 
and may be useful to treat other cases.

Observe that when a space is simply connected, there will be only one Nielsen 
class and therefore the Nielsen number is either zero or one. If the Lefschetz 
number is zero, then the Nielsen number will also be zero.

Moreover, under the conditions stated in the theorem above and assuming also 
that each component of MH has dimension bigger than or equal to three, for all 
H ≤ G , it is true that N(f H) = 0 implies that f H is deformable to fixed point free 
map and therefore f is equivariantly deformed to a fixed point free map.
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Turning to the question involving deformations, i.e., maps homotopic to the iden‑
tity, we begin by quoting a classical theorem of H. Hopf (see [37]) which states 
that a closed connected orientable smooth manifold M admits a non-singular vector 
field if and only if the Euler characteristic of M, �(M) , vanishes. R. Brown, in [7], 
extended this result to topological manifolds, by replacing vector fields with path 
fields, a concept first introduced by J. Nash in [43]. R. Brown showed that a compact 
topological manifold admits a non-singular path field if and only if �(M) = 0.

The non-singular path field problem is equivalent to the fixed point free deforma‑
tion problem, that is, M admits a non-singular path field if and only if the identity 
map on M is homotopic to a fixed point free map. Since the Euler characteristic of a 
manifold M coincides with the Lefschetz number of a map homotopic to the identity 
on M, the converse of the Lefschetz Fixed Point Theorem holds true for deforma‑
tions on topological closed, orientable manifolds.

Moreover, the existence of a path field allows one to show the Complete Invari‑
ance Property (CIP). A topological space M is said to have CIP if for any non-empty 
closed subset A of M, there exists a map f ∶ M → M having A as its fixed point set. 
Similarly, M has CIP with respect to deformation (denoted by CIPD) if f ∶ M → M 
is homotopic to the identity on M.

L. D. Borsari, F. Cardona and P. Wong, in the work Equivariant Path Fields on 
Topological Manifolds, see [1], an equivariant analog of Brown’s results in [7] are 
given for locally smooth G-manifolds, for G a finite group. More specifically, the 
following theorems hold true:

Theorem  3.2  [1, Theorem  3.7] Let G be a finite group and M a compact locally 
smooth G-manifold. Then there exists a G-path field on M having at most one singu-
lar orbit in the closure of each component of MH . Moreover, M admits a non singu-
lar G-path field if and only if |�|(MH) = 0 , for all H ≤ G.

Theorem  3.3  [1, Theorem  4.1]) Let G be a finite group and M a compact locally 
smooth G-manifold. Suppose for each isotropy type (H), MH has dimension at 
least 2. Let A ⊂ M be a non-empty closed invariant subset. Then the following are 
equivalent: 

(a)	 There exists a G-deformation � ∶ M → M such that A = Fix(�).
(b)	 A ∩ C ≠ � whenever �(C) ≠ � for any connected component C of MH and C 

denotes the closure of C n MH.

Finally, related to the question of computing Nielsen numbers, as we mentioned 
in the previous section, in the non-equivariant case, for a compact, connected mani‑
fold M, B. Jiang (in [39]) defined a subgroup, J(M), of the fundamental group of M, 
�1(M) , and studied the spaces for which J(M) = �1(M) , the Jiang spaces. For these, 
all Nielsen fixed point classes have the same index and if L(f ) = 0 then N(f ) = 0 . In 
case L(f) is not zero then the Nielsen number coincides with the Reidemeister num‑
ber of f.
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The notions of G- equivariant Nielsen classes and of G-Jiang spaces were defined 
by P. Wong in [53] and [54] and it is also true that for a G-Jiang space, all equivari‑
ant Nielsen classes have the same index.

Fagundes and Gonçalves in a work named Fixed Point Indices of Equivariant 
Maps of Certain G-spaces, see [23], consider the family of spaces X for which all 
maps f ∶ X → X have the property (called J-property) that all Reidemeister classes 
have the same index. In many cases, spaces with this property are not G-Jiang 
spaces. For spaces having the J-property, they obtained the following result:

Theorem 3.4  [23, Theorem 3.4] Let X satisfy the J-property and G be a finite group 
which acts freely on X. If the G-spaces X have the property that the fundamental 
group of the orbit space is torsion free, then all equivariant Nielsen classes of a 
given equivariant map f ∶ X → X have the same index. Furthermore the index of 
each such class is |G| times the index of one of the Nielsen classes of f.

4 � Coincidence theory via classical obstruction theory

Let f , g ∶ X → Y  be a pair of maps between two topological spaces. Denote by 
C(f , g) = {x ∈ X | f (x) = g(x)} and let �(f , g) be the minimal number among the car‑
dinalities of C(f �, g�) , as f ′, g′ varies in the homotopy classes of f, g, respectively.

When X, Y are closed orientable manifolds of the same dimension, the fact that 
C(f , g) ≠ � is guaranteed by the classical Lefschetz coincidence theorem provided 
the Lefschetz coincidence number L(f, g) is nonzero.

Schirmer in [46] developed the coincidence Nielsen Theory in this context. Two 
coincidence points x0 and x1 are in the same coincidence Nielsen class of the pair 
(f, g) if there exists a path � , from x0 to x1 , such that f (�) is homotopic, as paths, to 
g(�) . An index of a Nielsen coincidence class is also defined and the Nielsen coin‑
cidence number, N(f, g), is the number of classes with non zero index, the essen‑
cial ones. The Lefschetz coincidence number then represents the global index of the 
coincidence set and N(f, g) is a homotopy invariant and therefore a lower bound to 
the minimal number of fixed points in the homotopy class of the pair (f, g). Schirmer 
also proves that N(f , g) = �(f , g) , when the dimension of the manifolds are bigger 
than or equal to three.

Dobrenko and Jezierski [15] succeeded developing a type of Coincidence Nielsen 
theory for maps between manifolds of the same dimension without the hypothesis 
of orientability. This extension came together with a new feature when comparing 
with the classical case, namely, the local index, called semi-index, is defined for the 
coincidence Nielsen classes, and it is no longer necessarily an integer. It is, in fact, 
an element of either ℤ or ℤ2 , the cyclic group of order 2. The index is an element of 
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ℤ2 for Nielsen classes called defective, and an integer for the others. It turns out that 
this Nielsen coincidence theory is very suitable to estimate �(f , g) . They succeed 
showing that a pair of maps can be deformed to coincidence free if and only if the 
Nielsen number is zero, in case the dimension of the manifold is at least three.

The validity of the converse of the Lefschetz Coincidence Theorem, which 
does not hold in general, amounts to the ability of deforming f and g to f ′ and 
g′ , respectively, such that the intersection between the diagonal ΔN of N and the 
graph of f � × g� is empty. Equivalently, it is a question of deforming f × g into the 
subspace N × N − ΔN  . This approach to the converse of the Lefschetz theorem 
was first studied by Fuller in [25]. Subsequently, Fadell in [18], Faddell and Hus‑
seine in [20, 21], Dobrenko and Jezierski in [15], Gonçalves in [28], Borsari and 
Gonçalves in [3, 4], Gonçalves, Jiezierski and Wong in [30] further explored the 
connection between coincidence theory and classical obstruction to deformation, 
among other contributions.

In the fixed point case, for non-simply connected manifolds of dimension at 
least three, Fadell and Husseini [20] computed the (only) primary obstruction to 
deforming a selfmap to be fixed point free (see also [14]). This approach gave 
an obstruction-theoretic proof of a classical result of Wecken stating that if the 
manifold is of dimension at least three then the Nielsen number N(f) is zero iff f is 
deformable to be fixed point free.

The purpose of this section is to describe the development of the coincidence 
theory that was obtained with the participation of the Algebraic Topology group 
of IME-USP.

We present the contributions that were made when looking at the primary 
obstruction for a pair of maps f , g ∶ K → N from a finite complex K of dimension 
m into a manifold N of dimension n, in the cases m = n and m > n , since it is well 
known that for m < n , all pair of maps can be deformed to a coincidence free pair 
of maps. We observe that the vanishing of the primary obstruction, in general, 
is not sufficient to guarantee that the pair can be deformed to a coincidence free 
pair. Accidentally this may happen and examples are given in [30, Section  5], 
where a pair of maps from a torus into a nilmanifold can be deformed to coinci‑
dence free if and only if the primary obstruction vanishes.

For a more systematic study of coincidence theory in positive codimension, we 
would like to mention works by Hatcher and Quinn [35], Dimovski and Geoghe‑
gan [17], Jezierski [38], Koschorke [42], and Dold and Gonçalves [16]. We 
should observe that one motivation to the study of coincidence theory between 
manifolds of different dimensions comes from the fact that in [33] some questions 
were posed where a coincidence problem of two maps between closed manifolds 
of the same dimension was studied via another coincidence problem of maps 
between manifolds of different dimensions.

The approach developed by Fadell and Husseini in [20], via obstruction theory, 
indicates which kind of algebraic object the index of a Nielsen coincidence class 
should be in more general settings. It turns out that for each Nielsen class, the 
index is going to be an element of an abelian group which depends on the Nielsen 
class. The approach via obstruction is quite suitable, in the sense that it is clear 
that if the index of all Nielsen classes are zero, the maps can be deformed, up to 
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the n0-skeleton of K to be coincidence free, where n ≤ n0 ≤ m and n0 is the first 
integer for which the cohomology group Hn0 (K) , with a certain system of coef‑
ficients, is non trivial.

When extending the theory for maps from a simplicial complex K into a manifold 
N one can not expect to deform the pair of maps so that the number of coincidences 
is finite. Also one can no longer expect to deform the maps such that each essencial 
coincidence Nielsen class has only one point, even when K has nice properties, such 
as being n-dimensionally-connected, for n = dimN greater than 2. So the problem of 
minimizing, in the homotopy class of the pair (f, g), the number of coincidences, in 
this more general setting, even in the case when K and N have the same dimension, 
requires a new approach in order to stablish a type of Nielsen coincidence theory. 
This will be explored in what follows.

4.1 � General geometric and algebraic properties

The results described in this section were taken from [28]. In order to keep this 
paper self-contained, some of them are copied verbatim from [28].

Let f , g ∶ K → N be a pair of maps, where K is a finite complex and N is a mani‑
fold, both of dimension n.

From classical obstruction theory, see [52], and following [20], we have a coho‑
mology class On(f , g) ∈ Hn(K,ℤ[�]) which represents the primary obstruction 
to deform (f, g) to a pair of coincidence free maps. We recall that Hn(K,ℤ[�]) is 
the nth cohomology group of K with local coefficients ℤ[�] , where � = �1(N) . The 
action w ∶ �1(K) → Aut(ℤ[�]) is given by w(�).� = sign(f#(�))g#(�)�f#(�)

−1 . This 
gives the abelian group ℤ[�] a structure of a ℤ[�1(K)]-module or, in short, a �1(K)
-module.

Let R(f , g) be the set of Reidemeister classes and let

where [�] ∈ R(f , g) . By definition of the action one can see that the subgroups A[�] 
are invariants under this action. Let us denote by �[�] ∶ �1(K) → Aut(A[�]) the action 
of �1(K) on A[�] , provided by the action � . With respect to the above actions we 
have:

Proposition 4.1  [28, Proposition 2.1] The ℤ[�1(K)]-module ℤ[�] is isomorphic to 
the direct sum of the ℤ[�1(K)]−modules A[�] , where the action is given in a natural 
way by the direct sum of the actions �[�] ∶ �1(K) → Aut(A[�]) and

Let F ⊂ Coin(f , g) be a Nielsen class. This class F corresponds to a Reidemeister 
class which we denote by [�].

The above result motivates the following definition.

A[𝛼] ≈ ⊕𝛼∈[𝛼]ℤ𝛼 ,

Hn(K,ℤ[𝜋]) ≈ ⊕[𝛼]∈R(f ,g)H
n(K,A[𝛼]).
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Definition 4.1  The index of F, denoted by i(F) is p[�](On(f , g)) , where

is the natural projection.

Definition 4.2  F is called essential if i(F) ≠ 0.

Let us consider the cocycle cn(f , g) as defined in [20], using classical obstruc‑
tion theory.

Proposition 4.2  [28, Proposition 2.2] The cocycle cn(f , g) is the sum of cocycles cn
[�]

 , 
where the summand cn

[�]
 is a cocycle of Hn(K,A[�]) , for [�] ∈ R(f , g).

Consider the case where K is a n-manifold. We observe that if K has non-
empty boundary, then it has the homotopy type of a (n − 1)-complex. Therefore 
Hn(K,ℤ[�]) = 0 and every pair (f,  g) can be made coincidence free. So let us 
assume that K is a manifold without boundary.

Proposition 4.3  [28, Proposition 2.5] i(F) is either an element of ℤ or ℤ2.

Theorem 4.1  [28, Theorem 2.6] For f , g ∶ M → N where M and N are manifolds of 
the same dimension, we have N(f , g) = �(f , g).

The above result, that has been proved by Schirmer [46] in the orientable case 
and by Dobrenko and Jezierski [15] in the non-orientable case, not only solves 
both cases at once, but also gives some insight on how to deal with complexes 
more general than a manifold.

The examples that will be presented in what follows were taken from [28, sec‑
tion 4] and will show that the classical Nielsen coincidence number is too weak 
to estimate �(f , g) . So, in order to extend the theory for maps from a more general 
complex into a manifold, we constructed in [4] an algorithm, using all possible 
cocycles representing the primary obstruction class, to find the number �(f , g) , 
which will be described in Sect. 4.3.

Example 1  Consider n disjoint copies of the sphere Sm and connect them by strips of 
dimension m − 1 . Take a map f from the above complex into the m-sphere such that 
f restricted to any one of the spheres is homotopic to the identity. Let g be the con‑
stant map. Then certainly R(f , g) contains only one element and N(f , g) = 1 . But it 
is quite simple to see that �(f , g) = n.

Example 2  Consider n disjoint copies of the sphere Sm and connect them, in 
sequence, by points and take f and g as in Example 2. Then R(f , g) contains only one 
element and N(f , g) = 1 . But it is not hard to see that �(f , g) = [(n + 1)∕2] , where [ ] 
means the greatest integer less than or equal to the number inside of the bracket.

p[�] ∶ Hn(K,ℤ[�]) → Hn(K,A[�])
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Example 3  Consider the bouquet of n, spheres Smand take f and g as above. This 
space has the same homotopy type as the spaces given in Examples 2 and 3, R(f , g) 
contains only one element and N(f , g) = 1 . It is easy to see that �(f , g) = 1.

Example 4  Let Ki, i = 1, 2 , be the two 2-cell complexes obtained from S1 by attach‑
ing a 2-cell by the maps �i ∶ S1 → S1, i = 1, 2 , of degrees 2 and 3, respectively. ( K1 
is just the two-dimensional projective space.) Take

where we identify the one skeleton S1 ⊂ K1 with S1 × 0 and S1 ⊂ K2 with S1 × 1 . 
One can show that K is simply connected and has the homology of the sphere S2 . So 
K has the homotopy type of the 2-sphere. If we consider f , g ∶ K → S2 where g is 
the constant map and f has degree d (which we may assume greater than zero), we 
have:

(a) If d is relatively prime with 6, then �(f , g) ≥ 2 , because the maps restricted to 
Ki, i = 1, 2, must have at least one coincidence point. (We believe that �(f , g) = 2.)

(b) If d is relatively prime with 2, then there exists at least one coincidence point 
in K1 and of course �(f , g) ≥ 1 . The cases where d is relatively prime to 3 are similar.

(c) Finally, if 6 divides d, then we believe that �(f , g) = 1 and the coincidence 
point can be located anywhere in K.

This example shows that even for a complex which has the homotopy type of 
a compact manifold, the situation can be quite different from the case where the 
domain is a compact manifold.

Comments Example 2 was known by R. Brooks, in [6], where the reader will 
also find some material related with this work.

The examples above show how relevant the geometry of the complex K is, in 
order to define a Nielsen type number to play the role of a good lower bound for 
�(f , g) . It also becomes clear that one should look for a Van Kampen type theorem.

4.2 � Local coincidence index, the number NO(f, g; K) and the minimal number 
of coincidences

The results in this section were taken from [4] and some of them were copied verba‑
tim from [4].

In this section we define a homotopy invariant which coincides, under mild con‑
ditions, with the minimal number of coincidences in the homotopy class of the pair 
f , g ∶ K → Nn , where K is a simplicial complex of dimension n and Nn is a closed 
n-manifold. This invariant is constructed in terms of the primary obstruction to 
deform a pair of maps to coincidence free as well as in terms of the geometry of the 
complex K. We will start by reviewing the notion of local index as formulated by 
Fadell and Husseini in  [21], adapted to the terminology of the coincidence context.

K1 ∪ S1 × [0, 1] ∪ K2

∼
,
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Let U be an open set of K and (f , g) ∶ U → Nn be a pair of maps where the set of 
coincidence points are compact.

As in   [21], we consider the diagonal △ in Nn × Nn and replace the inclu‑
sion Nn × Nn −△ ↪ Nn × Nn by a fiber map p ∶ E → Nn × Nn , where 
E = {(�, �) ∶ �(0) ≠ �(0)} , and p(�, �) = (�(1), �(1)) . For b = (x, y) in Nn × Nn 
and Fb = p−1(b) , �m−1(Fb) is a local system of coefficients on Nn × Nn . There is an 
isomorphism of local systems on Nn × Nn

where � = �1(N
n, x) and the action of � × � on Z[�] is given by

We wil refer to this system as B.
Let the local system on U be the one induced from B by f × g ∶ U → Nn × Nn 

and denote it by B(f × g) . Consider the fiber space E(f,  g) obtained by pulling 
back p ∶ E → Nn × Nn over U by f × g.

The obstruction to deform the pair (f, g) to a coincidence free pair is related to 
the obstruction to extend sections of the fiber map E(f , g) → U.

Following the steps in   [21] and making the usual adaptations to the coinci‑
dence case, we end up with:

Definition 4.3  The coincidence index of (f , g) ∶ U → Nn is the cohomology class 
i(f,g) in Hn

c
(U;B(f × g)) with the property that (f, g) can be deformed by a compact 

homotopy to a coincidence free pair if and only if i(f,g) vanishes.

Consider now F an isolated set of coincidences of (f, g) and let V be an open 
set of U such that F = V ∩ coin(f , g) . Consider the diagram

where the first arrow is the inverse of the excision isomorphism and the sec‑
ond is induced by the inclusion. Recall that Hn

c
(U;B(f × g)) is the inverse limit of 

Hn(U,U − C;B(f × g)) , where the limit is taken over all compact subsets C of U.

Definition 4.4  The local coincidence index of F, denoted by i(f,g;F), is the element 
in Hn

c
(U;B(f × g)) given by k∗(j∗)−1(�) , where � in Hn(V ,V − F;B(f × g)) corre‑

sponds to the coincidence index of (f , g) ∶ V → Nn.

Let us consider the group Hn(K,A) , the n-th simplicial cohomology group of 
K with local coefficients, where A is a free abelian group and identified with the 
direct sum of Z′s indexed by some set J. We call a cochain cn ∈ Cn(K,A) elemen-
tary if cn is nonzero in only one n-simplex, called its support, and has value in 
one summand Z of A indexed by j ∈ J . So we can associate to each elementary 

� ∶ �m−1(Fb, b) → Z[�],

� ⋅ (�, �) = sgn��−1 ⋅ � ⋅ �

Hn(V ,V − F;B(f × g))
j∗−1

−−→Hn(U,U − F;B(f × g))
k∗

−→Hn(U,U − coin(f , g);B(f × g))
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cochain a pair (Δn, j) , where Δn is its support and j is the index of the summand 
Z ⊂ A where the cochain assumes its value. Two elementary cochains are disjoint 
if the pairs (Δn, j) , (Δ,n, j�) are not equal. Given an arbitrary cocycle (or cochain) 
cn ∈ Cn(K,A) we define an integer, �(cn) , as follows:

The cocycle cn can be uniquely written as a sum of disjoint elementary cocy‑
cles i.e. cn = cn,1 + cn,2 + ... + cn,r , where each cn,i is elementary.

Definition 4.5  A cocycle is essential if it represents a nonzero cohomology class.

Definition 4.6  A partial sum cn,i1 + ... + cn,is of the decomposition of cn is said to be 
combinable if the intersection of the supports of all elementary summands is non‑
empty and they have values in the same summand Z of A. Define �(cn) to be the 
minimal number of combinable partial summands among all decompositions of cn.

Definition 4.7  For maps f , g ∶ K → Nn the number NO(f,  g;  K) is defined as the 
minimum of the numbers �(cn) , where cn runs over the set of all cocycles represent‑
ing the obstruction On(f , g) ∈ Hn(K, Z[�]) to deform (f, g) to coincidence free.

Theorem 4.2  [4, Theorem 3.6] NO(f, g; K) is a homotopy invariant.

In order to state the minimizing result we need to set some notation. We will 
define a decomposition of K in terms of a simplicial structure of K, although it can 
be shown that it does not dependent on the choice of the simplicial structure. For 
each maximal simplex Δn of K, let C(Δn) be the smallest subcomplex which con‑
tains all n-simplices Δ�n such that there is a sequence of n-simplices starting at Δn 
and ending Δ�n so that the intersection of two consecutive ones is a (n − 1)-simplex 
which faces only these two n-simplices. This defines a covering of K by homoge‑
neous simplicial subcomplexes which we denote by {K1, ...,Kr} . Associated to this 
covering we have the subcomplex K0 =

⋃
i≠j Ki ∩ Kj . Observe that the points of K0 

are characterized by the property that they are not locally Euclidean in K.

Theorem 4.3  [4, Theorem 4.1] Let (f , g) ∶ K → Nn be a pair of maps, where K and 
Nn have dimension bigger than or equal to three. Assume every component of K0 is 
of non-zero dimension. Then the minimum number of coincidences in the homotopy 
class of the pair (f, g) is given by NO(f, g; K).

Remark 4.1  In the case where some, if not all, components of K0 have zero dimen‑
sion, it could happen that two or more combinable partial sums have the intersection 
of their supports being only one point. In this case, only one set of coincidences, 
arising from the combinable partial sums, would be joint to this point. Therefore, 
we would have to add to the number �(cn) the number of elements of all, except the 
biggest, combinable partial sums for which the intersection of supports is the same 
single point.Then, the minimum of these numbers, as cn runs through all possible 
cocycles representing the obstruction class, will give us the minimum number of 
coincidences in the homotopy class of the pair (f, g).



526	 São Paulo Journal of Mathematical Sciences (2022) 16:508–538

1 3

As an application of the above result, let K′ ⊂ K be any subcomplex such that the 
homomorphism i∗ ∶ Hn(K, Z[�]) → Hn(K�, Z[�]) , induced by the inclusion map, is 
a cohomology isomorphism with local coefficients, where � = �1(N

n) . Observe that 
if two subcomplexes have this property then their intersection does too. Hence, we 
may always consider the minimal one, namely, the intersection of all subcomplexes 
satisfying the above condition.

Theorem 4.4  [4, Theorem 4.3] Given f , g ∶ K → Nn then �(f , g) = �(f �, g�) , where 
f ′, g′ are the restrictions of f, g, respectively, to K′.

Remark 4.2  It is not an easy task to compute �(f , g) since one first need to find the 
obstruction class and then apply the algorithm using the cocycles. Nevertheless, one 
can estimate some upper bound for �(f , g) . Certainly the number of n-dimensional 
simpleces is an upper bound. But a much better upper bound can be defined when 
Nn is simply connected.

Let C = {Ki1
, ...,Kir

} be the covering of K defined above, and assume that all 
components of K0 have nonzero dimension.

Definition 4.8  A subset {Ki1
, ...,Kis

} of the covering C = {K1, ...,Kr} is called 
admissible if the intersection Ki1

∩ ... ∩ Kir
≠ � . Let �(C) be the minimal number 

of admissible subsets which cover C. For the purpose of computing �(C) we can 
assume, without loss of generality, that the admissible sets are maximal in the sense 
that for any Kj ≠ Kit

 , t = 1, ..., r , we have Kj ∩ Ki1
∩ ... ∩ Kir

= �.

Proposition 4.4  [4, Theorem  5.3] Given f , g ∶ Kn → Nn , where Nn is simply con-
nected, then �(f , g) ≤ �(C).

In [4, Section 5] one can find examples which illustrate the above results.

4.3 � Poincaré duality with local coefficients and the primary obstruction

The results of this section were taken from [30]. To keep this paper self-contained, 
some of the presented results are copied verbatim from [30].

In this section we look at coincidences of a pair of maps f , g ∶ Km → Nn , where 
K and N are manifolds and m ≥ n . We would like to provide ways of computing the 
primary obstruction in this more general situation. We succeed doing this when K is 
a closed PL-manifold and the result resembles those where the manifolds have the 
same dimension. For simplicity we will assume that K is an orientable PL-manifold. 
The results hold true without the orientability hypothesis, and they are proved using 
the same techniques as in the orientable case, see [29].

We will present two types of results. In the first one, we identify the primary 
obstruction with a certain homology class determined by Coin(f,  g). The sec‑
ond one express the primary obstruction in terms of a sum of cup products of 
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certain classes related to the Thom class, with local coefficients, of the fibration 
(K × K,K × K�Δ) → K.

Let Γ be a local system on a space X. Recall from [49] that Δ∗(X;Γ) , the chain 
complex with coefficients in the local system Γ , is defined as the set of finite sums ∑

g�� , where � ∶ Δq → X is a singular chain and g� is a section of the system Γ 
over � . More precisely, g� subordinates to each x ∈ Δq an element g�(x) ∈ Γ�(x) so 
that for any path � ∶ [0, 1] → Δq the equality Γ��(g�(�(0))) = g�(�(1)) holds.

Then the boundary homomorphism � ∶ Δq(X;Γ) → Δq−1(X;Γ) is given by

where �(i) denotes i-th face of � and g�|�(i) the restriction of g� to this face. This gives 
the homology groups with local coefficients H∗(X;Γ).

We will often write g�(x)� instead of g�� . Here g�(x) denotes the value of the 
section g� at a point x ∈ Δq . Since Δq is simply connected, the value at a point 
determines the section g�.We define cohomology with local coefficients H∗(X;Γ) 
in a similar way.

Let N be a closed oriented PL-manifold which from now on will be assumed to 
have dimension at least three. In order to define the local system � on N × N let 
us recall from (1.12) Theorem in [52, p.263] that it is enough to define a group 
�(x,y) , for a point (x, y), and the action of �1(N × N;(x, y)) on �(x,y) . We fix a point 
(x, y) ∈ N × N ⧵ ΔN and we define �(x,y) = �n(N × N,N × N ⧵ ΔN;(x, y)) . Since 
dimN ≥ 3 , �1(N × N;(x, y)) = �1(N × N ⧵ ΔN;(x, y)) and the last group acts on 
�(x,y) . We will describe the group �(x,y) and the above action as in ([14, 20]). The 
inclusion

given by i(z) = (z, y) , induces the isomorphism of homotopy groups

We fix an embedding ��
0
∶ (Δn, bdΔn;v0) → (N,N ⧵ {x}, y) representing the orienta‑

tion of N. Let us denote ��
�
= �◦��

0
 , for � ∈ �1(N;y) . Then

and hence

where �� = i#(�
�
�
) and � ranges over the group �1(N;y) . Moreover the action of the 

group

is then given by

�(
∑

�

g��) =
∑

�

(

q∑

i=0

(−1)i(g�|�(i) )�(i))

i ∶ (N,N ⧵ {x}, y) → (N × N,N × N ⧵ ΔN;(x, y))

i# ∶ �n(N,N ⧵ {x}, y) → �n(N × N,N × N ⧵ ΔN;(x, y))

𝜋n(N,N ⧵ {x};y) = ⊕𝛼∈𝜋1(N;y)
ℤ𝜃�

𝛼

𝜋(x,y) = 𝜋n(N × N ⧵ ΔN;(x, y)) = ⊕𝛼ℤ𝜃𝛼 ,

�1(N × N) = �1N × �1N
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In other words, �1N × �1N is acting on �1N by (�, �)◦� = ���−1.
We define the twisted Thom class �N as the primary obstruction to the deforma‑

tion of the identity map on N × N to a map outside ΔN ⊂ N × N as in [14]. We fix 
a triangulation of N × N such that (n − 1)-skeleton is disjoint from the diagonal: 
(N × N)(n−1) ⊂ N × N ⧵ ΔN . We write N× to denote the pair (N × N,N × N ⧵ ΔN) . 
Then the obstruction belongs to Hn(N×;�) where the system � was defined 
above (set (X,A) = (N × N, (N × N)(n−1)) and (Y ,B) = (N × N,N × N ⧵ ΔN) 
in section  2 in [14]). This obstruction can be represented by the cocycle 
c ∈ Cn(N × N,N × N ⧵ ΔN;�) defined by

for each simplicial n-simplex. Since the simplicial and singular cohomology groups 
are isomorphic, this cocycle is defined on singular simplices and the above formula 
holds for any � ∶ (Δn, �Δn) → (N × N,N × N ⧵ ΔN).

Let C(f , g) = {x ∈ M|f (x) = g(x)} denote the coincidence set and � = �n(N
×) 

be the local system on N × N . Denote by �n∗ the local system on M induced by 
(f × g)d . Then the primary obstruction to deforming f and g on the n-th skeleton 
of M off the diagonal ΔN is given by on(f , g) = [j(f × g)d]∗(�N , ) where �N is the 
twisted Thom class of N. The following generalizes a similar formula in [38] and in 
[35] in the case of simple coefficients.

Theorem 4.5  [30, Theorem 3.3] The coincidence set C(f, g) determines the homology 
element dual to the primary obstruction such that D−1

M
(on(f , g)) = [z�

∗

C(f ,g)
] ∈ Hm−n(M;�∗).

We now consider a pair of maps into N, where N is a compact simply-connected 
manifold.Then the local system

is trivial, and so it is the induced system �∗.
A similar formula to the one in [18] for the Lefschetz coincidence class holds for 

the primary obstruction.

Theorem  4.6  [30, Theorem  3.4] Let M be closed oriented PL-manifold, 
dimM = m ≥ n ≥ 3 . Let f , g ∶ M → N be a pair of maps where N is any compact 1−
connected manifold whose homology H∗(N) is torsion free. Then

where yi is the Poincaré dual of xi ∈ H|�i|(N) and xi is defined by the Kronecker 
pairing with respect to a homogeneous basis {�1, ..., �p} for H∗(N) . In particular if 
N = Sn then

(�, �)◦�� = ����−1 .

< c, 𝜎 >= [id(𝜎)] = [𝜎] ∈ 𝜋n(N
×;𝜎(v0))

�(x, y) = �n((N)
×;(x, y)) = �n(N,N ⧵ {x};y) = ℤ

on(f , g) = Σ(−1)|�i|f ∗(xi) ∪ g∗(yi),
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We finish this section observing that the notion of minimal number of fixed 
points, minimal number of roots and minimal number of coincidences, in the homot‑
opy class of the maps involved, is a well defined concept when the spaces involved 
are manifolds of the same dimension or some few other situations slightly more 
general.

In the context of roots or coincidences of maps between two complexes where 
the domain has dimension strictly bigger than the dimension of the target, or fixed 
points for more general spaces like compact spaces, one no longer expects to deform 
the maps involved so that the number of either roots, coincidences or fixed points 
becomes finite. We present here an attempt of defining the concept of minimal set 
for each of these three cases, in a very general topological context, which we hope to 
be suitable mainly for the situation when the minimal number is not finite.

For topological spaces X and Y, we denote by [X, Y] the set of homotopy classes 
of maps from X to Y.

Definition 4.9  For �, � ∈ [X, Y] we say that Coin(f0, g0) is minimal in the pair of 
homotopy class (�, �) if Coin(f,  g) is not a proper subset of Coin(f0, g0) , for any 
(f , g) ∈ (�, �).

Definition 4.10  For � ∈ [X,X] we say that Fix(f0) is minimal in the homotopy class 
� if Fix(f) is not a proper subset of Fix(f0) , for any f ∈ �.

Denoting by Roy0 (f ) = {x ∈ X | f (x) = yo} , we define

Definition 4.11  For � ∈ [X, Y] a homotopy class we say that Roy0 (f0) is minimal in 
the homotopy class � if Roy0 (f ) is not a proper subset of Roy0 (f0) , for any f ∈ �.

There are some works where the minimal sets are considered according to these 
definitions as [26, Theorem  2.5], [27, Proposition 3.2], [24] and [32]. We should 
point out that all sort of simple questions, including very naive ones, relative to the 
concept defined above, have not been explored yet. Notable, it is not true in general 
that, in the same homotopy class of a pair of maps, two minimal sets are homeomor‑
phic, see example 2.14 in [10]. Also, it is not true that when the minimal number 
exists, i.e. it is finite, the cardinality of a minimal set is the minimal number, see 
[31].

Appendix: G‑deformation to fixed point free maps via obstruction 
theory

Lucília D. Borsari and Daciberg L. Gonçalves

on(f , g) = g∗(cSn ) + (−1)nf ∗(cSn ).
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In this section we present an alternative proof of Theorem 3.1 stated in Sect. 3. 
Consider G a finite group and let M be an n−dimensional compact differentiable 
G−manifold. Given a G−map f ∶ M → M and a subgroup H of G, it is defined a 
map f H ∶ MH → MH . It is easy to see that if f is equivariantly deformable to a fixed 
point free map then f H is deformable to a fixed point free map, for every H ≤ G . 
One would like to know if the converse of this statement holds true. A.Vidal has 
shown that when G acts semi-freely on a simply connected manifold M, with codim 
MG ≥ 3 , then being able to deform f ∶ M → M and f G ∶ MG → MG to fixed point 
free maps suffices to deform f equivariantly to a fixed point free one (see [50]). We 
will show that Vidal’s result holds true under weaker hypothesis.

As we mentioned before, by the time this work was being written down, the 
authors received a copy of E. Fadell and P. Wong’s paper (see  [22]), with the main 
results basically the same as ours, although proved with different techniques. The 
proof that will be presented is based on obstruction theory and it seems to be inter‑
esting by its own and might be useful to treat other cases.

Equivariant cohomology with local coefficients

Let M be an n−dimensional compact, differentiable manifold with boundary, �M , 
where G acts freely. We may assume that M has a simplicial complex structure.

Definition 5.1  A G−local system over M is a local coefficient system w over M (in 
the classical sense) together with homomorphisms

for every g ∈ G and x0 ∈ M , satisfying:
a) (g2.g1)# = g2#◦g1#,
and
b) g1#◦�# = (g1(�))#◦g1#,
where g1, g2 ∈ G and � is a path in M.

It is well known that the fundamental group of the orbit space M/G is an exten‑
sion of the fundamental group of M by G, i.e., there is a short exact sequence

where p ∶ M → M∕G is the projection.
Given a G−local system over M, w, it induces a local coefficient system over M/G 

as follows: for each vertex [x] ∈ M∕G , choose a vertex x0 ∈ M , with [x] = [x0] , and 
define w([x]) = w(x0) . Given � ∈ �1(M∕G, [x]) , represented by � ∶ I → M∕G , con‑
sider the unique lifting 𝜆̃ ∶ I → M of � with 𝜆̃(0) = x0 . Then 𝜆̃(1) = g.x0 for some 
g ∈ G . Let �# ∶ w([x]) → w([x]) be the composite:

g# ∶ w(x0) → w(g.x0),

0 ⟶ �1(M)
p∗

−−→�1(M∕G) ⟶ G ⟶ 0,
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Since w is a local coefficient system over M, we have a well-defined map

given by

Furthermore, � is a group homomophism; for if �1 and �2 belong to �1(M∕G, [x]) 
and are represented by paths �1 and �2 respectively, let 𝜆̃1 e 𝜆̃2 be the unique lift‑
ings of �1 e �2 respectively with 𝜆̃1(0) = 𝜆̃2(0) = x0 . Consider g1, g2 ∈ G such that 
𝜆̃1(1) = g1.x0 and 𝜆̃2(1) = g2.x0 . Then

Remark 5.1  Let p ∶ M → M∕G be the projection onto the orbit space M/G. Then the 
composite

defines a local coefficient system over M which agrees with the original system w.

For each k−simplex �k of M, write, 𝜎K =< x0 x1 ⋯ xk > and call x0 the leading ver‑
tex of �k . Denote by Ck(M, �M;w) the set of all functions assigning to each k−simplex 
�k of M an element of w(x0) and vanishing on every k−simplex of the boundary of M, 
�M . Since w(x0) is an abelian group, Ck(M, �M;w) has a structure of an abelian group.

Define a G−action on Ck(M, �M;w) by

where g�k has leading vertex gx0.

Proposition 5.1  The subgroup of Ck(M, �M;w) fixed by G is isomorphic to 
Ck(M∕G, �M∕G;w).

Proof  Given � ∈ Ck(M, �M;w)G , define � ∈ Ck(M∕G, �M∕G;w) by �(�k
) = �(�k) , 

where �k is the k−simplex over �k having leading vertex chosen as in the definition 
of w . It is easy to see that this correspondence is an isomorphism. 	�  ◻

We will now describe a G-local system of coefficients that will be useful for our 
purpose.

Consider a G−fibration (E, p, B) and a diagram of the type

w(x0)
g#
−−→w(g.x0)

𝜆̃−1

−−→w(x0).

� ∶ �1(M∕G, [x]) → Aut(w([x]))

�(�) = �#.

(𝛼1)#◦(𝛼2)# = (𝜆̃−1
1
◦g1#)◦(𝜆̃

−1
2
◦g2#)

= 𝜆̃−1
1#
◦(g1(𝜆̃

−1
2
))#◦g1#◦g2#

= (g1(𝜆̃
−1
2
) ∗ 𝜆̃−1

1
)#◦g1#◦g2#

= (𝛼1 ∗ 𝛼2)#.

�1(M, x0)
p∗

⟶�1(M∕G, [x0])
�

⟶Aut(w(x0))

(g�)(�k) = (g−1)#�(g�
k),
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where f is equivariant and f1 is an equivariant lifting of f |�M to E. Assume the fiber 
F of the fibration is simply connected, and that we have already lifted f relative to 
�M up to the (k − 1)−skeleton of M. The obstruction to extend the lifting of f to the 
k−skeleton lies in the cohomology group Hk(M, �M;w) , where w denotes the local 
coefficient system induced by the local coefficient system {�k−1(F)} over B, via f.

It is straightforward to see that the obstruction to extend the lifting of f equivari‑
antly to the k−skeleton lies in Hk(M∕G, �M∕G;w) , where w is the local coefficient 
system over M/G, induced by w, as defined above.

We now specialize to the case that applies to fixed point theory.
Let N be an n−dimensional compact differentiable G−manifold, with n ≥ 3 . Let 

M ⊂ N be a connected submanifold with boundary, where G acts freely. Consider 
f ∶ M → N an equivariant map and assume f |�M is fixed point free. We would like 
to know under which conditions f can be deformed equivariantly to a fixed point free 
map relative to �M.

Consider the diagram

where Δ is the diagonal in N × N and the maps i and i1 are natural inclusions.
According to  [20], we have over N × N a local coefficient system with groups 

�n(N × N,N × N − Δ) ≈ ℤ[�] , where � = �1(N) . The action of � × � on ℤ[�] is 
given by

for �, � ∈ � and � ∈ ℤ[�].
Now, this local system induces, via i × f  , a local system over M, w, where the 

action of �1(M) in �n(N × N,N × N − Δ) ≈ ℤ[�] is given by:

where � ∈ �1(M) , � ∈ ℤ[�] and i∗ , f∗ are the induced maps on fundamental groups.

Proposition 5.2  The local coefficient system, w , over M/G, induced by w as above, is 
given by w([x0]) = ℤ[�] and the action of �1(M∕G) on ℤ[�] is given by:

for � ∈ �1(N) , � ∈ �1(M∕G) , 𝜎̃ a lifting of � to M starting at x0 and � representing 
� in N.

�M
f1

⟶ E

↓ ↓ p

M
f

⟶ B

N × N − Δ

↓ i1

M
i×f
⟶ N × N

,

(�, �)� = sgn(�).(� ∗ � ∗ �−1),

�� = (i∗(�), f∗(�))� =

= sgn(i∗(�))f∗(�) ∗ � ∗ i∗(�)
−1,

𝜎𝛼 = sgn(𝜎)i#(f (𝜎̃) ∗ 𝜎̃−1)(𝜎̃ ∗ g𝛽 ∗ 𝜎̃−1),
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Proof  Using the general definition of w given in the beginning of the section, and 
following the same argument as in Theorem 3.1 of [20], the result follows. This is a 
left action and it coincides with the one in [20] when G is the trivial group. 	�  ◻

The main results

Let G be a finite group acting smoothly on a connected, differentiable n−dimen‑
sional manifold N. Let A ⊂ N be a submanifold invariant under the G−action and 
consider a G−map f ∶ (N,A) → (N,A) with f |A fixed point free.

Proposition 5.3  Suppose G acts freely on N − A . If f can be deformed to a fixed 
point free map and one of the following conditions 

a)	 codim (A,N) ≠ 1 and dim N ≠ 2

b)	 �1(N) = 0

holds, then f can be deformed equivariantly (relative to A) to a fixed point free map.
Proof  Let us assume first that condition a) holds. We may also assume that 
codim(A,N) ≠ 0.

Let f1 = f |N−A ∶ N − A → A . It is easy to see that f and f1 have the same Nielsen 
classes and therefore the Nielsen number of f, N(f), coincides with the local Nielsen 
number of f1 (see [21] for local Nielsen number). Since f is deformable to a fixed 
point free map, N(f ) = 0 and so is N(f1,N − A) . This implies, since dimN ≥ 3 , that 
we can deform f1 relative to (N − A) − intK , where K is some compact inside N − A . 
Hence, we can find an equivariant tubular neighborhood V(A) of A, so that f can be 
deformed, relative to �V(A) , to a fixed point free map.

Now, the obstruction to deform f equivariantly to a fixed point free map lies on

where 
o

V(A) denotes the interior of V(A).
We have just shown that this obstruction belongs to the kernel of

where p is the projection onto the orbit space. Therefore, is suffices to show that p∗ 
is one to one. In order to do this, consider the transfer

which is induced by the map � given, at the chain level by

From now on the proof follows Vidal’s ideas (see [50]).

Hn((N −
o

V(A))∕G, �V(A)∕G;w),

p∗ ∶ Hn((N −
o

V(A))∕G, �V(A)∕G;w) → Hn(N −
o

V(A), �V(A);w),

�∗ ∶ Hn(N −
o

V(A), �V(A);w) → Hn((N −
o

V(A))∕G, �V(A)∕G;w)

�(�)([�n]) =
∑

g∈G

g−1�(g�n).
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We certainly have �∗◦p∗ given by multiplication by the order of G. Hence, it suf‑
fices to show that Hn((N −

o

V(A))∕G, �V(A);w) is torsion-free. By the duality theo‑
rem given in Lemma 2.1 in [52], we have

where wt is the ℤ[�1((N −
o

V(A))∕G]−module structure defined in [52]. By definition 
of wt , the action of ℤ[�1((N −

o

V(A))∕G] on ℤ[�1(N)] is the one given in Proposition 
5.2, except for the term sgn(�) , i.e.,

This action defines an equivalence relation on �1(N) , which splits �1(N) into disjoint 
equivalence classes. The quotient of the group ring ℤ[�1(N)] by this action is iso‑
morphic to a direct sum of ℤ’s, indexed by the set of classes �1(N)∕ ∼.

So Hn((N −
o

V(A))∕G, �V(A)∕G;w) is torsion-free and the results follows.
For the case where �1(N) = 0 , we may assume codim(A,N) = 1 , since oth‑

erwise the proof would follows the steps of the first part. From the fact that N is 
simply-connected, we have w(x0) ≈ ℤ . By hypothesis, the Lefchetz number’s L(f) 
and L(f |A) vanish and therefore L(f , f |A) = 0 . This means that the obstruction to 
deform f equivariantly maps into zero. By the same arguments as above, we have 
that H0((N −

o

V(A))(G;ℤt) ≈ ℤ and hence, torsion free, and the proof is complete. 	
� ◻

Proposition 5.4  Suppose G acts on a compact differentiable manifold M with only 
one orbit type, say G/H. Assume either �1(MH) = 0 or dimension of MH is bigger 
than or equal to 3. Then a G−map f ∶ M → M can be deformed equivariantly to a 
fixed point free map if and only if f H ∶ MH → MH can be deformed to a fixed point 
free map.

Proof  The assumption that the action has only one orbit type implies that 
� ∶ G ×NH MH → M , �([g, x]) = gx , is a G−isomorphism. Here NH denotes de nor‑
malizer of H in G (see [5]).

Since NH/H acts freely on MH , Proposition 5.3 implies that f H can be deformed 
NH∕H−equivariantly to a fixed point free map. Denote by (Lt)t∈I a NH∕H−homot‑
opy which realizes this deformation.

Let �t ∶ G ×NH MH → G ×NH MH be given by �t([g, x]) = [g,Lt(x)] and 
consider the composite �◦�t◦�

−1 ∶ M → M . Then it is a G−homotopy 
with �◦�0◦�

−1(x) = �[g, L0(g
−1x)] = gf H(g−1x) = f (x) , where x ∈ M and 

g ∈ G is such that Gx = gHg−1 . Now, if x is a fixed point of �◦�1◦�
−1 , then 

x = �◦�1([g, g
−1x]) = gL1(g

−1x) which is a contradiction, since L1 is fixed point 
free.

Hence, �◦�t◦�
−1 is a G−homotopy from f to a fixed point free map and the proof 

is done. 	� ◻

We are now ready to prove the main result. Let us first set up some notation.

Hn((N −
o

V(A))∕G, �V(A)∕G;w) ≈ H0((N −
o

V(A))∕G;w
t
),

𝜎𝛼 = i∗(f (𝜎̃) ∗ 𝜎̃−1)(𝜎̃ ∗ g𝛽 ∗ 𝜎̃−1).
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Let G act on M and consider (H1),⋯ , (Hr) the orbit types of the action ordered in a 
way that if (Hi) ⊂ (Hj) then j ≤ i . For each i ∈ {1,⋯ , r} , let Mi = {x ∈ M∕(Gx) = (Hj), j ≤ i} . 
Then M

1
⊂ M

2
⊂ ⋯ ⊂ Mr , M1 = M(H1)

= {x ∈ M∕(Gx) = (H1)} , Mr = M and 
Mi −Mi−1 = {x ∈ M∕(Gx) = (Hi)} = M(Hi)

.
Denote by Cl(H) a connected component of MH , for each subgroup H of G.

Theorem  5.1  Let f ∶ M → M be a G−map such that f H ∶ MH → MH can be 
deformed to a fixed point free map for each isotropy subgroup H of G. Assume the 
action satisfies one of the following conditions: 

a)	 dimCi(H) ≠ 2, ∀H ≤ G and whenever Ci(H) ⊂ Cj(K) the codimension is different 
from 1.

b)	 Ci(H) is simply-connected, ∀i, ∀H ≤ G.

Then f can be deformed equivariantly to a fixed point free map.
Proof  We will assume condition a) holds.The proof assuming condition b) is totally 
analogous.

We look at f1 = f |M1
 . Since f H1 is deformable to a fixed point free map and the 

action on M1 has only one orbit type, it follows from Proposition 5.4, that f1 is equiv‑
ariantly deformable to a fixed point free map. Using G−homotopy extension prop‑
erty, we may assume f1 is fixed point free.

The proof proceeds by induction. Assuming fi−1 = f |Mi−1
 is fixed point free we 

must show that fi = f |Mi
 can be equivariantly deformed (relative to Mi−1 ) to a fixed 

point free map.
Consider f

Hi

= f Hi |MHi−F ∶ MHi − F → MHi , where F = MHi ∩Mi−1 , and 
observe that MHi − F = {x ∈ M ∶ Gx = Hi} . By hypothesis, codim(F,MHi) ≥ 2 
which implies that f Hi and f

Hi have the same Nielsen classes and therefore 
N(f

Hi

,MHi − F) = N(f Hi) = 0 . So f Hi can be deformed to a fixed point free map rel‑
ative to Mi−1 ∩MHi . Now, f Hi is a NHi∕Hi−map and NHi∕Hi acts freely on MHi − F , 
hence, by Proposition 5.2.1, f Hi can be deformed NHi∕Hi−equivariantly, relative 
to MHi ∩Mi−1 , to a fixed point free map. Denote by (Ht)t∈I , the NHi∕Hi−homotopy 
which deforms f Hi to fixed point free map. Define

by

Then (Ht)t∈I is G−homotopy with

and

Ht ∶ G ×NHi
(MHi ,F) → G ×NHi

(MHi ,F)

Ht([g, x]) = [g,Ht(x)].

H0([g, x]) = [g, f Hi(x)]
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Let � ∶ G ×NHi
(MHi ,MHi ∩Mi−1) → (M(Hi),M(Hi) −M(Hi)

) be given by �([g, x]) = gx . 
Here, M(Hi) = {x ∈ M ∶ (Gx) ⊃ (Hi)} . Observe that � is onto and one to one when 
restricted to G ×NHi

(MHi − (MHi ∩Mi−1)) . Define, also,

by

where g ∈ G is such that g−1x ∈ MHi.
It is not hard to verify that Lt is well-defined and G−equivariant. Also,

and

Hence, (Lt)t∈I is a G−homotopy (relative to Mi1
∩M(Hi) ) from f (Hi) to a fixed point 

free map.
But, Mi = M(Hi) ∪Mi−1 and therefore we may define Lt ∶ Mi → Mi by

Hence, (Lt)t∈I is a G−homotopy (relative to Mi−1 ) from fi = f |Mi
 to a fixed point free 

map and the theorem is proved. 	�  ◻
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